Biosolids (sludge) vs. Anhydrous Ammonia Fertilizer

Dave and Wayne Nielsen

Private Industry Cooperator: Earle Raun

OBJECTIVE:

To determine and document the effect on profitability and soil fertility of biosolids versus anhydrous ammonia fertilizer as a nutrient source. Biosolid effects will be evaluated on a corn, grain sorghum, soybean and wheat rotation.

BIOSOLXDS ANHYDROUS

Treatment: Treatment:

Load sludge (1993 only)

Fertilize: 1993 - Sludge (45 tons/acre)

1994 - Anhydrous Ammonia

134 pounds

1995 - None

1996 • 70 pounds 11-52-O

50 pounds 34-O-O

None

Fertilize: 1993 - Anhydrous Ammonia

120 pounds

1994 - Anhydrous Ammonia

134 pounds

1995 - None

1996 • 70 pounds 11-52-0

50 pounds 34-O-O

No-till plant

No-till plant

Biosolids (sludge) vs. Anhydrous Ammonia Fertilizer, Dave and Wayne Nielsen Page $\bf 2$

BIOSOLIDS		ANHYDROUS	
Comparative cost (per acre)		Comparative cost (per acre)	
Load and spread sludge Less city reimbursement Total	1993 \$.96/ton 65/ton \$.31/ton x 45 tons \$13.95/acre		<u>1993</u>
Sludge 40% x \$13.95/acre (see Summary) None	\$5.58 \$ 0.00	None Fertilizer (Anhydrous) 120 lbs @ \$185/ton Fertilizer Application	\$0.00 \$13.54 \$ 5.88
None Total	\$ 0.00	Total	\$19.42
30% x \$13.95/acre Fertilizer (Anhydrous) 134 Ibs @ \$195/ton Fertilizer application Total	1994 \$4.19 \$15.93 \$ 5.88 \$26.00	None Fertilizer (Anhydrous) 134 lbs @ \$195/ton Fertilizer application Total	1994 \$0.00 \$15.93 \$ 5.88 \$21.81
20% x \$13.95/acre Fertilizer Total	1995 \$2.79 \$0.00 \$2.79	None Fertilizer Total	1995 \$0.00 \$0.00 \$0.00
10% x \$13.95/acre Fertilizer application (34-O-O) \$3.50/acre 11-52-0 34-0-0	1996 \$ 1.40 \$3.50 \$9.00 \$7.00	Fertilizer Application 11-52-0 34-0-0 Total	1996 \$3.50 \$9.00 \$7.00 \$19.50
Total	\$20.90		

Biosolids (sludge) vs. Anhydrous Ammonia Fertilizer, Dave and Wayne Nielsen Page 3

VARIABLE	1993	1994	1995	1996
	CORN	SORGHUM	SOYBEANS	WHEAT
Final Population (plants/acre) Biosolids Anhydrous	20,600	N/A	N/A	N/A
	20,800	N/A	N/A	N/A
Moisture (%) Biosolids Anhydrous	15.7 *** 17.1	13.7 ** 13.8	10.3 10.3	11.5 * 12.2
Test Weight (pounds/bushel) Biosolids Anhydrous	57.3 ***	60.3	56.4	60.4
	56.2	59.8	56.4	60.2
Yield (bushel/acre) Biosolids Anhydrous	(15.5%)	(14%)	(13%)	(13%)
	101 **	155 ***	16 **	47 ***
	96	120	15	35

1993 Spring Soil Test	Auuroximate	Biosolids	Nutrient	Content
37 pounds residual Nitrogen	Nitrogen			7.6 pounds/ton
pH 5.3	Phosphorus			5.8 pounds/ton
O.M. 2.3%	Potassium			.6 pounds/ton
Texture - Silt loam	Zinc			.3 pounds/ton
Phosphorus 9.2 ppm (low)	sulfur			1.2 pounds/ton
Potassium 264 ppm (very high)				
Zinc .59 ppm (medium)	Note:	Nutrients	may not	be readily available

Note: Nutrients may not be readily available.

significantly different at 90% confidence level
 significantly different at 95% confidence level
 significantly different at 99% confidence level

Biosolids (sludge) vs. Anhydrous Ammonia Fertilizer, Dave and Wayne Nielsen Page 4

Summary:

The corn fertilized with biosolids yielded significantly higher than the anhydrous fertilized crop in 1993. The biosolids <u>were not</u> incorporated in this comparison. This rolling, upland field had a low phosphorus level which made it a good candidate for biosolid nutrient response. It was an unusually wet growing season in 1993.

In 1994, this field was rotated to grain sorghum and an anhydrous ammonia fertilizer was applied to the entire field. The yield difference between treatments was significantly different at the 99 % confidence level.

Soybeans planted in 1996 in the residual biosolids treatments yielded significantly higher than the non-fertilized areas. The yield difference was significant at the 95 % confidence level.

In 1996, wheat was grown in this trial. The entire area received a uniform application of nitrogen and phosphorus fertilizer. The residual biosolids strips yielded significantly higher than those strips that did not receive biosolids in 1993. The yield difference was significant at the 99% confidence level.

Biosolid nitrogen resources are estimated to be 40% available the year of application, 30% the following year, 20% the third year and 10% the fourth year. Biosolids also contain other valuable nutrients including phosphorus, potassium, sulfur and zinc. The anhydrous fertilizer treatment cost approximately \$11.001 acre more than the biosolids treatment in the application year when the biosolids application expenses are amortized over their useful life. The profitability of using biosolids depends largely on available labor, machine investment and soil characteristics.