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Section 1: Crystal Structure  

A solid is said to be a crystal if atoms are arranged in such a way that their positions are exactly 
periodic. This concept is illustrated in Fig.1 using a two-dimensional (2D) structure.  

 

 

 

 

 Fig.1 

 

 

A perfect crystal maintains this periodicity in both the x and y directions from -∞ to +∞. As follows 
from this periodicity, the atoms A, B, C, etc. are equivalent. In other words, for an observer located at 
any of these atomic sites, the crystal appears exactly the same.  

The same idea can be expressed by saying that a crystal possesses a translational symmetry. The 
translational symmetry means that if the crystal is translated by any vector joining two atoms, say T in 
Fig.1, the crystal appears exactly the same as it did before the translation. In other words the crystal 
remains invariant under any such translation.  

The structure of all crystals can be described in terms of a lattice, with a group of atoms attached to 
every lattice point. For example, in the case of structure shown in Fig.1, if we replace each atom by a 
geometrical point located at the equilibrium position of that atom, we obtain a crystal lattice. The 
crystal lattice has the same geometrical properties as the crystal, but it is devoid of any physical 
contents.  

There are two classes of lattices: the Bravais and the non-Bravais. In a Bravais lattice all lattice points 
are equivalent and hence by necessity all atoms in the crystal are of the same kind. On the other hand, 
in a non-Bravais lattice, some of the lattice points are non-equivalent.  

 

 

 

   

 

 Fig.2 

 

In Fig.2 the lattice sites A, B, C are equivalent to each other. Also the sites A1, B1, C1, are equivalent 
among themselves. However, sites A and A1 are not equivalent: the lattice is not invariant under 
translation AA1.  
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Non-Bravais lattices are often referred to as a lattice with a basis. The basis is a set of atoms which is 
located near each site of a Bravais lattice. Thus, in Fig.2 the basis is represented by the two atoms A 
and A1. In a general case crystal structure can be considered as  

crystal structure = lattice + basis. 

The lattice is defined by fundamental translation vectors. For example, the position vector of any 
lattice site of the two dimensional lattice in Fig.3 can be written as 

T=n1a1+n2a2 , (1.1) 

where a1 and a2 are the two vectors shown in Fig.3, and n1,n2 is a pair of integers whose values depend 
on the lattice site.  

 

 

 

 

 Fig.3 

 

 
So, the two non-collinear vectors a1 and a2  can be used to obtain the positions of all lattice points 
which are expressed by Eq.(1). The set of all vectors T expressed by this equation is called the lattice 
vectors. Therefore, the lattice has a translational symmetry under displacements specified by the lattice 
vectors T. In this sense the vectors a1 and a2 can be called the primitive translation vectors.  

The choice of the primitive translations vectors is not unique. One could equally well take the vectors 
a1 and a = a1+a2  as primitive translation vectors (see Fig.3). This choice is usually dictated by 
convenience. 

Unit cell. In the case of a rectangular two dimensional lattice the unit cell is the rectangle, whose sides 
are the vectors a1 and a2. If the unit cell is translated by all the lattice vectors expressed by Eq.(1), the 
area of the whole lattice is covered once and only once. A primitive unit cell is the unit cell with the 
smallest area which produces this coverage. In the two dimensional case the area of the unit cell is 
given by S=|a1×a2|. 

The choice of the unit cell is not unique. For example, the parallelogram formed by the vectors a1 and 
a in Fig.3 is also an acceptable unit cell. The choice is again dictated by convenience. The area of the 
unit cell based on vectors a1 and a2  is the same as that based on vectors a1 and a. 

Wigner-Seits unit cell. The primitive cell may be chosen 
as shown in Fig.4. (i) Draw lines to connect a given 
lattice point to all nearby lattice points. (ii) At the 
midpoint and normal to these lines, draw new lines 
(planes in 3D). The smallest volume enclosed is the 
Wigner-Seitz primitive cell. All the space of the crystal 
may be filled by these primitive cells, by translating the 
unit cell by the lattice vectors. 
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The unit cell can be primitive and non-primitive (or conventional). The unit cell discussed above is 
primitive. However, in some cases it is more convenient to deal with a unit cell which is larger, 
however, it exhibits the symmetry of the lattice more clearly.  

 

 

 

 

 

 Fig.5 

 
Vectors a1 and a2 can be chosen as primitive translation vectors for the lattice shown in Fig.5. In this 
case the unit sell is parallelogram. However, the lattice can also be regarded as adjacent rectangles, 
where the vectors c1 and c2 can be considered as primitive translation vectors. The unit cell in this case 
is larger, however it exhibits the rectangular symmetry more clearly. In the first case we have just one 
atom in a unit cell, whereas in the second case we have a lattice with a basis. The basis consists of the 
two atoms: one atom is located in the corner of the unit cell and another atom in the center of the unit 
cell. The area of the conventional unit cell is larger by a factor of two than the area of the primitive 
unit cell. 

Crystal lattices are classified according to their symmetry properties, such as inversion, reflection and 
rotation.  

Inversion center. A cell has an inversion center if there is a point at which the cell remains invariant 
under transformation r -> -r. All the Bravais lattices are inversion symmetric. Non-Bravais lattices 
may or may not have an inversion center depending on the symmetry of the basis. 

Reflection plane. A cell has a reflection plane if it remains invariant when a mirror reflection in this 
plane is performed.  

Rotation axis. This is an axis such that, if the cell rotated around the axis trough some angle, the cell 
remains invariant. The axis is called n-fold if the angle of rotation is 2� /n. Only 2-, 3-, 4-, and 6-fold 
axes are possible.  

There are five Bravais lattice types in two dimensions shown in Fig.6. For each of them the rotation 
axes and/or mirror planes occur at the lattice points. However, there are other locations in the unit cell 
with comparable or lower degrees of symmetry with respect to rotation and reflection. 

For non-Bravais lattices we have to take into account the symmetry of the basis which is referred as 
point-group symmetry.  The point group symmetry includes all possible rotations, reflections and 
inversion, which leave the basis invariant. Point groups are denoted by a numerical and “m” . The 
numerical indicates how many positions within the basis are equivalent by rotation symmetry. A 
single m shows that the basis has a mirror plane symmetry. (In two dimensions – it is mirror axis). 
E.g., 3m means that there are 3 equivalent sites within the unit cell and there is one mirror plane. In 
two dimensions there are 10 point groups.  

When we combine the rotation symmetry of the point group with the transnational symmetries, we 
obtain a space-group symmetry.   
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Fig.6 



Physics 927 
E.Y.Tsymbal  

  

 5 

All the lattice properties we discussed for two dimensions can be extended to three dimensions. The 
lattice vectors are in this case    

T=n1a1+n2a2+n3a3 (1.2) 

where a1, a2 and a3 are the primitive translation vectors, and (n1,n2,n3) are a triplet of integers whose 
values depend on a particular lattice site. The unit cell in three dimensions is a parallelepiped, whose 
sides are the primitive translation vectors (see Fig.7). Here again the choice of the unit cell is not 
unique, although all primitive unit cells have equal volumes. The unit cell fills all space by the 
repetition of crystal translation operations. The volume of the unit cell represented by a parallelepiped 
with sides a1, a2 and a3 is given by 

V=|a1⋅⋅⋅⋅a2×a3|. (1.3) 

Also, it is sometimes more convenient to deal with non-primitive or conventional cells, which have 
additional lattice sites either inside the cell or on its surface. 

      

 

 

 

 Fig.7 

 

In three dimensions there are 14 different Bravais crystal lattices which belong to 7 crystal systems. 
These systems are triclinic, monoclinic, orthorhombic, tetragonal, cubic, hexagonal and trigonal. The 
crystal lattices are shown in Fig.8. In all the cases the unit cell represents a parallelepiped whose sides 
are a1, a2 and a3. The opposite angles are called α, β and γ. The relationship between the sides and the 
angles determines the crystal system. A simple lattice has sites only at the corners, a body-centered 
lattice has one additional point at the center of the cell, and a face-centered lattice has six additional 
points, one on each side. Note that in all the non-simple lattices the unit cells are non-primitive. The 
volume of the primitive unit cell is equal to the volume of the conventional unit cell divided by the 
number of sites.  

Each of the 14 lattices has one or more types of symmetry properties with respect to reflection and 
rotation.  

Reflection: The triclinic structure has no reflection plane, the monoclinic has one plane midway 
between and parallel to the basis plane, and so forth.  The cubic cell has nine reflection planes: three 
parallel to the faces, and six other, each of which passes through two opposite edges.  

Rotation: The triclinic structure has no axis of rotation (do not take into account 1-fold axis), the 
monoclinic has a 2-fold axis normal to the base. The cubic cell has three 4-fold axis normal to the 
faces and four 3-fold axis, each passing through two opposite corners.  
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 Fig.8 

Triclinic  (a1≠≠≠≠a2≠≠≠≠a3 α≠≠≠≠β≠≠≠≠γ) 

simple 
 

base-centered 
 

Monoclinic  (a1≠≠≠≠a2≠≠≠≠a3 α=β=90o≠≠≠≠γ) 
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Orthorombic  (a1≠≠≠≠a2≠≠≠≠a3 α=β=γ=90o) 

base-centered 
 

simple 
 

body-centered  
 

face-centered 
 

Tetragonal  (a1=a2≠≠≠≠a3 α=β=γ=90o) 

simple 
 

body-centered  
 

simple 
 

body-centered  
 

face-centered 
 

Cubic  (a1=a2=a3 α=β=γ=90o) 

Hexagonal  ( a1=a2≠≠≠≠a3 α=β=90o γ=120o) 
Trigonal  (a1=a2=a3 α=β=γ≠≠≠≠90o) 
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Most common crystal structures 

Body-centered cubic  (bcc) lattice: 
 
 
 
 
 
 
 
 
 
 
 
 

Primitive translation vectors of the bcc lattice (in units of lattice parameter a) are a1 = ½½-½; a2 =  -
½½½; a3 = ½-½½. The primitive cell is the rhombohedron. The packing ratio is 0.68, defined as the 
maximum volume which can be filled by touching hard spheres in atomic positions. Each atom has 8 
nearest neighbors.    

The conventional unit cell is a cube based on vectors a1 = 001; a2 = 010; a3 = 001. It is twice big 
compared to the primitive unit cell and has two atoms in it with coordinates r1 = 000 and  r2 = ½½½.  

The bcc lattice have alkali metals such as Na, Li, K, Rb, Cs, magnetic metals such as Cr and Fe, and 
and  refractory metals such as Nb, W, Mo ,Ta.   
 
Face-centered cubic  (fcc) lattice: 
 
 
 
 
 
 
 
 
 
 
 
 
Primitive translation vectors of the bcc lattice (in units of lattice parameter a) are a1 = ½½0; a2 = 
0½½; a3 = ½ 0½. The primitive cell is the rhombohedron. The packing ratio is 0.74. Each atom has 
12 nearest neighbors.    

The conventional unit cell is a cube based on vectors a1 = 001; a2 = 010; a3 = 001. It is 4 times bigger 
than the primitive unit cell and has 4 atoms in it with coordinates r1 = 000; r2 = ½½0; r3 = 0½½; r4 = 
½0½. 

The fcc lattice have noble metals such as Cu, Ag, Au, common metals such as Al, Pb, Ni and inert 
gas solids such as Ne, Ar, Kr, Xe.   
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Hexagonal closed-packed (hcp) lattice: 
 

 

 

 

 

 

 

The hcp structure has a1=a2≠a3, α=β=90o and γ=120o with a basis of two atoms, one at 000 and 
the other at 2 1 1

3 3 2 . Along with the fcc structure, the hcp structure maximizes the packing ratio, 
making it 0.74.  

   

   close-packed structure (fcc)         hcc structure       fcc structure 
 
A closed-packed structure is created by placing a layer of spheres B on top of identical close-packed 
layer of spheres A. There are two choices for a third layer. It can go in over A or over C. If it goes in 
over A the sequence is ABABAB. . . and the structure is hcp. If the third layer goes in over C the 
sequence is ABCABCABC. . . and the structure is fcc.  

In perfect hcp structure the ratio of the height of the cell to the nearest neighbor spacing is (8/3)½ .  
In practice the (a3/a1) ratio is larger than 1.633 for most hexagonal crystals. Examples of 
nominally hcp crystals include the elements from Column II of the Periodic Table: Be, Mg, 
Zn, and Cd. Hcp is also the stable structure for several transition elements, such as Ti and Co. 

Diamond structure is adopted by solids with four 
symmetrically placed covalent bonds. This is the situation 
in silicon, germanium, and grey tin, as well as in diamond. 
Diamond has the translational symmetry of fcc lattice with 
a basis of two atoms, one at 000 and the other at ¼¼¼. 
Diamond structure represents two inter-penetrating fcc 
sublattices displaced from each other by one quarter of the 
cube diagonal distance.  
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Index system for crystal directions and planes 

Crystal directions. Any lattice vector can be written as that given by Eq.(1.2). The direction is then 
specified by the three integers [n1n2n3]. If the numbers n1n2n3 have a common factor, this factor is 
removed. For example, [111] is used rather than [222], or [100], rather than [400]. When we speak 
about directions, we mean a hole set of parallel lines, which are equivalent due to transnational 
symmetry. Opposite orientation is denoted by the negative sign over a number. For example: 
 
 

 

 

 

 

 

 

 

Crystal planes. The orientation of a plane in a lattice is specified by Miller indices. They are defined 
as follows. We find intercept of the plane with the axes along the primitive translation vectors a1, a2 
and a3. Let’s these intercepts be x, y, and z, so that x is fractional multiple of a1, y is a fractional 
multiple of a2 and z is a fractional multiple of a3. Therefore we can measure x, y, and z in units a1, a2 
and a3 respectively. We have then a triplet of integers (x y z). Then we invert it (1/x 1/y 1/z) and reduce 
this set to a similar one having the smallest integers by multiplying by a common factor. This set is 
called Miller indices of the plane (hkl). For example, if the plane intercepts x, y, and z in points 1, 3, 
and 1, the index of this plane will be (313).  

 

 

 

The Miller indices specify not just one plane but an infinite set of equivalent planes. Note that for 
cubic crystals the direction [hkl] is perpendicular to a plane (hkl) having the same indices, but this is 
not generally true for other crystal systems. Examples of the planes in a cubic system: 
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