
Mathematicians have been fascinated with polynomials for centuries. Surely you
have fond memories of those critters, expressions like f(x) = x2 − 1 or h(x, y) =
5x2 + 3y2 − 2xy that you spent countless hours graphing, factoring, differentiating
and integrating back in calculus. It turns out, there are many questions about
polynomials we still don’t know the answer to. But thanks to the efforts of Professor
Mark Walker, that list of open questions is now slightly shorter.

To describe Professor Walker’s work, we’ll need a little bit of background in
algebra. Note that if you add, subtract, and multiply polynomials you get new
polynomials. You can’t, however, divide them and expect a polynomial in return,
as all exponents appearing in polynomials should be positive integers. Such a col-
lection in algebra is called a ring, and the set of all polynomials in a given set of
variables (say {x, y, z}) is called a polynomial ring. The study of polynomial rings
as an object of study goes back at least 130 years to the seminal work of David
Hilbert. Two of Hilbert’s most famous theorems, the Hilbert Basis Theorem and
Hilbert’s Syzygy Theorem, both proved in 1890, concern properties of polynomial
rings. These results ushered in a new area research in mathematics now known
as commutative algebra (the word “commutative” here refers to the fact the multi-
plication is commutative in these rings) and thrives to this day. In fact, over the
past two years there have been a remarkable number of breakthroughs on several
long-studied problems concerning polynomial rings, with Professor Walker’s result
being among them.

Before going further, we firm up notation a bit. We’ll let k[x1, . . . , xn] denote
the polynomial ring in the variables x1, . . . , xn where the coefficients in front of the
variables comes from a field k, which for our purposes will be either the real numbers
or the complex numbers. A module over k[x1, . . . , xn] is the analogue of a vector
space, and can be represented as a matrix (not necessarily square) whose entries
are elements of k[x1, . . . , xn]. One might hope to classify all modules over the ring
k[x1, . . . , xn] up to isomorphism, much as the Jordan Canonical Form classifies all
matrices (with entries from k) up to similarity. But this is known to be impossible
for polynomial rings. Instead, one hopes to understand other invariants of such
modules, and first and foremost among these are the Betti numbers.

Betti numbers of modules are the algebraic analogues of the invariants of a
topological space that go by the same name. In topology, the i-th Betti number
βi(T ) of a topological space T refers, loosely speaking, to the number of cells of
dimension i that are needed to build a space. For example, the representation of
the torus

as the result of making edge identifications on a rectangle as in the picture
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shows that we need 1 point, 2 edges and 1 two-dimensional piece (the rectangle 
itself) to build a torus, and the Betti numbers of the torus T are indeed

β0(T ) = 1, β1(T ) = 2, and β2(T ) = 1.

In algebra, the Betti numbers β0(M), β1(M), . . . of a module M are the ranks of 
the free modules occurring in its minimal free resolution; that is, they are the small-
est natural numbers β0, β1, . . . such that there exist a exact sequence of modules 
of the form

· · · → Rβ1 → Rβ0 → M → 0,
where Rβ denotes the direct sum of β copies of R = k[x1, . . . , xn].

As an example, suppose n = 2 so that we are talking about modules over the 
polynomial ring in two variables. Consider the module M over k[x1, x2] represented 
by the matrix [x1 x2]. The minimal free resolution of M takes the form

0 → k[x1, x2]1 → k[x1, x2]2 → k[x1, x2]1 → M → 0

so that its Betti numbers are

β0(M) = 1, β1(M) = 2, and β2(M) = 1.

The fact that this list is identical to the list of topological Betti numbers of the 
torus is no coincidence — there is a very real sense in which the module M we have 
described here is an algebraic representation of the torus.

The Hilbert Basis Theorem and the Hilbert Syzygy Theorem, mentioned above, 
imply that

• the free modules occurring in the minimal resolution of M have finite rank,
so that the list of Betti numbers of a module really is a list of integers, and
• the list terminates after n+ 1 steps, where n is the number of variables.

Thus, attached to any module M over the ring k[x1, . . . , xn] is a finite list of positive
integers

(β0(M), β1(M), . . . , βn(M)) ∈ N×n+1

which describe, roughly, the sizes of the various free modules needed to build M .
This stands in analogy (and it is actually more that just an analogy) with the
situation in topology, where a compact CW complex of dimension n can be built
from finitely many cells of dimensions 0 through n.

There is a special class of modules, called finite length modules, which are of
particular interest to researchers. In the 1970’s David Buchsbaum and David Eisen-
bud and, independently, Geoffrey Horrocks, formulated a basic question about the
smallest possible values of Betti numbers of finite length modules over the ring
k[x1, . . . , xn]:
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BEH Conjecture: The Betti numbers of a non-zero, finite length module M over
the ring k[x1, . . . , xn] satisfy βi(M) ≥

(
n
i

)
.

By the Binomial Theorem,
∑n
i=1

(
n
i

)
= 2n, and thus the original BEH Conjec-

ture immediately suggests a weak form of it, which is sometimes called the “Total 
Rank Conjecture”, formulated by UNL’s own Lucho Avramov in 1985. Professor 
Avramov promoted the notion that the weak form of the BEH Conjecture is ac-
tually the more plausible conjecture, in part because of its relationship with the 
well-known Toral Rank Conjecture in topology.

Total Rank Conjecture: The sum of the Betti ∑numbers of a non-zero, finite 
length module M over the ring k[x1, . . . , xn] satisfies i βi(M) ≥ 2n.

There was little progress on either conjecture over the years, and it was thus 
a great surprise to many when, in December 2016, Professor Walker presented a 
proof of the Total Rank Conjecture (for almost all fields k, including the reals and 
complexes) at a conference in Oberwolfach, Germany.

Those attending the joint meeting of the AMS-MAA in January of 2018 can 
learn more about Walker’s result in Craig Huneke’s talk “How Complicated are 
Polynomials in Many Variables”, which is part of the Current Events Bulletin 
Session on Jan. 12.


