## Vineyard Management for Quality Wine

#### Andy Allen Viticulture and Enology Program Arkansas Tech University - Ozark



Final wine quality is derived to a large degree from grape composition.

#### Grape composition is influenced by:

- Climate
- Cultivar
- Site characteristics
- Cultural practices

Quality wine is only made from grapes with good potential for wine quality, managed in such a way as to maximize their components that contribute to wine quality potential.

Vineyard management practices for quality winegrapes

- Focus on:
  - -Vine balance
  - -Canopy management
  - -Crop load management
  - -Vine nutrition

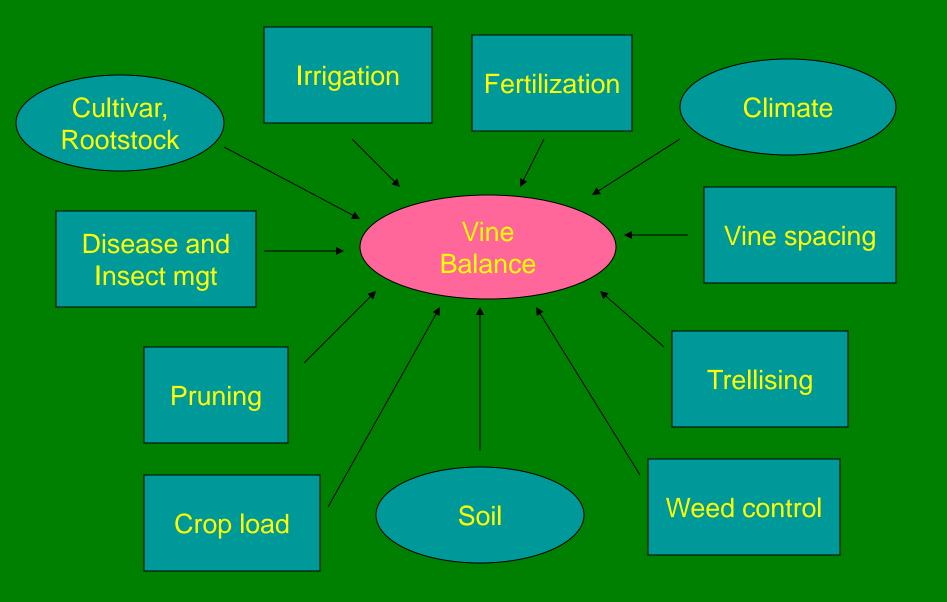
#### **Balanced Vines**

Balance has been achieved between vegetative growth and fruiting when a sustainable yield of high quality fruit is obtained each season.

## The Balancing Act

### Fruit production

(Carbohydrates utilized)




(Carbohydrates produced)

### **Indicators of Balance**

- Pruning weight per foot of canopy:
  0.2 to 0.4 lbs
- Yield to pruning weight ratio (Ravaz Index):
  - Vinifera: 5-10
  - Native and hybrid: largely undetermined but considered to be higher
- Leaf area to fruit weight ratio: – 3 to 8 ft<sup>2</sup>/lb

### **Factors Affecting Balance**



### Major Vineyard Management Factors

- Trellising
- Spacing
- Pruning
- Crop adjustment

## **Trellising and Spacing**

The vine must not only have enough leaf area, the leaves must be properly displayed to achieve maximum photosynthetic production.

## Spacing

- Row spacing
  - Has greater effect on yields per acre
  - Should be far enough apart to prevent row-torow shading
- Vine spacing
  - Far enough apart to allow vine to express vigor
  - Shoot density

## **Balanced Pruning**

- Resulted from research on Concord in Michigan by Partridge and in New York by Shaulis
- Goal is to balance fruit production of the vine with vegetative growth (cane growth and maturation)
- Patridge proposed using pruning weights of live cane tissue from year one to predict upper limit of vine's capacity to produce and ripen crop in year two

## **Balanced Pruning**

- Estimate vine size and then prune the vine
- Weigh one year old cane prunings using a small spring scale
- Apply the weight obtained to a pruning formula to determine the number of nodes to retain per vine
- Upper limit to node number?

## Canopy management

•Cultural practices which modify the canopy density to improve vine microclimate:

- Trellis choice
- Vine/row spacing
- Fertilization/irrigation practices
- •Vine health maintenance
- Physical manipulation of canopy components\*

### **Canopy management practices**

- Shoot thinning
  - Should be done when shoots are 2"-6" in length
  - Remove shoots from "non-count" positions
  - Improves canopy density
    - Reduces shoot density, leaf layer number
    - Increases proportion of canopy gaps, exterior leaves
  - Reduces crop load

## **Canopy management practices**

#### Shoot positioning

- Goal is to re-orient shoots into position appropriate for trellis/training system
- Should be done when shoots are long enough to remain in place after positioning but before tendrils attach to neighboring shoots
- May require more than one pass through vineyard
- Improves environment around fruiting/renewal zone
- Has benefits for other vineyard management tasks



#### Canopy management practices

- Leaf removal
  - Should be done between fruit set and peasize
  - Remove 2-6 leaves per shoot in the fruiting zone
  - Improves canopy microclimate by reducing leaf layer number
  - Possibly the most beneficial canopy management practice
    - Can improve fruit composition and color
    - Can reduce bunch rots



Benefits of canopy management • Improving the canopy microclimate to permit more light and air penetration into fruiting zone

- Reduces disease pressure
- Improves spray penetration
- Allows more efficient photosynthesis
- Improves fruit composition
  - Improves color
  - Reduces levels of methoxypyrazines
  - Improves development of flavor and aroma compounds
  - Improves sugar and acid composition

## Influence of leaf removal on development of bunch rot in winegrapes in Missouri in 1992.

| Treatment    | Incidence | Severity |  |  |
|--------------|-----------|----------|--|--|
| Vignoles     |           |          |  |  |
| Leaf removal | 13.8*     | 15.0*    |  |  |
| Control      | 28.7      | 25.1     |  |  |
| Seyval blanc |           |          |  |  |
| Nonsprayed   |           |          |  |  |
| Leaf removal | 28.3*     | 27.3*    |  |  |
| Control      | 42.8      | 31.2     |  |  |
| Sprayed      |           |          |  |  |
| Leaf removal | 17.4*     | 20.5*    |  |  |
| Control      | 34.1      | 32.1     |  |  |

English, et al. 1993. Plant Disease 77:1224-1227.

# Light environment effects on grape quality

- Good exposure of bunches to light increases terpenoids, phenolics, and color pigments
- Good exposure can decrease levels of methoxypyrazines
- Excessive heat can reduce color, phenolics and volatile aromatics

#### **Cluster exposure effects**

- Cluster exposure of Traminette
  - Exposed (E), Light Shade (LS), Moderate Shade (MS), Heavy Shade (HS)
  - Leaf layer numbers 0, 1, 2, >3
  - E, LS and MS had higher Brix, lower pH and lower TA and HS
  - As shading decreased, PVT and total monoterpenes increased with E having ~30% higher concentration than HS

#### **Cluster exposure effects**

- Cluster exposure of Golden Muscat
  - Exposed (58% leaf removal) and Shaded (48% shoot positioned)
  - Shaded clusters were darker than exposed
  - Exposed clusters had higher TSS (~2 °Brix)
  - Exposed clusters had phenolic content (350 mg/L vs 270 mg/L)
  - Shaded clusters had higher pH and K+ content
  - Shaded clusters had higher FVT than exposed
  - Exposed clusters had higher PVT than shaded
  - Wines from exposed clusters were less acidic, had higher phenolics (24g/L) and greater PVT than shaded

Macauley and Morris. 1993. AJEV 44:198-204.

#### **Cluster exposure effects**

- Cluster exposure of Shiraz
  - Shaded (5%), Moderate Exposure (10-40%), High Exposure (40-80%)
  - Shading reduced Brix, delayed ripening by 7 days compared with MET and HET
  - Shading reduced total anthocyanins compared to MET and HET
  - Total skin phenolics were higher in HET than MET and in MET than in ST
  - Skin tannins in ST were 30-40% lower than HET, tannins in HET were 10-20% higher than MET
  - ST wines were rated lower for mouthfeel and fruit flavor

Ristic, et al. 2006. Proc. ASVO Seminar 'Finishing the Job' – Optimal Ripening of Cabernet Sauvignon and Shiraz.

## Effect of one- and two-sided leaf removal on composition of Cynthiana juice and wine in three seasons in Arkansas.

| Year and treatment | Soluble<br>solids (%) | рН     | Titratable<br>acidity | Tartaric<br>acid<br>(g/L) | Malic<br>acid (g/L) | Total red<br>pigment<br>color |
|--------------------|-----------------------|--------|-----------------------|---------------------------|---------------------|-------------------------------|
| 1997               |                       |        |                       |                           |                     |                               |
| None               | 21.9 a                | 3.58 a | 14.2 a                | 6.3 a                     | 7.4 a               | 100 b                         |
| East side          | 22.1 a                | 3.53 a | 13.6 a                | 6.2 a                     | 6.8 a               | 121 a                         |
| Both sides         | 22.1 a                | 3.48 b | 12.5 b                | 6.0 a                     | 6.5 a               | 125 a                         |
| 1999               |                       |        |                       |                           |                     |                               |
| None               | 22.9 a                | 3.83 a | 10.1 a                | 8.0 a                     | 5.8 a               | 124 b                         |
| East side          | 23.1 a                | 3.84 a | 10.4 a                | 8.2 a                     | 5.4 a               | 157 a                         |
| Both sides         | 22.4 a                | 3.84 a | 10.3 a                | 8.0 a                     | 5.3 a               | 169 a                         |
| 2000               |                       |        |                       |                           |                     |                               |
| None               | 21.2 b                | 3.85 a | 11.2 a                | 7.0 a                     | 6.2 a               | 18 b                          |
| East side          | 21.8 a                | 3.82 a | 10.3 b                | 6.9 a                     | 5.2 b               | 25 a                          |
| Both sides         | 22.1 a                | 3.79 a | 10.3 b                | 6.8 a                     | 4.5 b               | 24 a                          |

Main and Morris, 2004. Amer. J. Enol. Vitic. 55:147-152.

#### Leaf removal and methoxypyrazines

- No removal; removal of leaves 1,3,5; removal of leaves 1-5 at 10, 40, 60 DAA
- Cabernet Franc
  - Early (10, 40 DAA) leaf removal reduced IBMP by up to 88% (2007) and 60% (2008)
  - 10 DAA increased Brix in 2007
  - Almost all treatments reduced TA in both years
  - pH was not affected by leaf removal treatments
- Merlot
  - All leaf removal treatments significantly reduced IBMP 37-52%
  - Leaf removal treatments had no effect on Brix, pH or TA

Scheiner, et al, 2010. Amer. J. Enol. Vitic. 61:358-364.

#### Crop load management

 Removal of shoots and clusters to achieve yield that is in balance with the vegetative growth of the vine

## Effects of Overcropping (Excessive Crop Load)

- Delayed maturity
- Decreased growth
- Loss of vine size
- Increased risk for winter injury
- Reduced subsequent yields
- Reduced fruit quality
- Reduced profitability

Winkler. 1954. AJEV 5:4-12

# The 3 steps of crop load management

- Balanced pruning
- Shoot thinning
- Cluster thinning

## Shoot thinning - hybrids

- Effects from research have been variable and cultivar specific
- Morris, et al. 2004. Arkansas
  - CultivarYield (t/a)Ravaz Index- Aurore8 to 5.513.6 to 8- Chancellor11.8 to 6.915.8 to 9- Villard Noir10.7 to 7.116.5 to 11.2
- No appreciable effect on Brix, pH or TA

## Shoot thinning - vinifera

- More effective on vinifera fruit and wine composition
- Reynolds, et al. 2005. Ontario
- Minor reduction in yield
- Pinot Noir
  - Increased TA and Brix in berries and must
- Cabernet Franc
  - Increased Brix and color intensity in berries
  - Reduced TA in musts
  - Higher color intensity, phenolics and anthocyanins in wine

#### Effects of canopy management practices on yield and fruit composition of Chambourcin grapevines trained to a high-wire single curtain trellis.

| Treatment   | Yield<br>Per Acre<br>(tons) | Average<br>Cluster<br>Number | Average<br>Cluster Wt<br>(g) | Average<br>Berry Wt<br>(g) | Average<br>Berries/<br>Cluster | Soluble<br>Solids<br>(%) | рН        | Titratable<br>Acidity<br>(g/L) |
|-------------|-----------------------------|------------------------------|------------------------------|----------------------------|--------------------------------|--------------------------|-----------|--------------------------------|
| SP+LR       | 9.7 a                       | 85.79 a                      | 150.16 efgh                  | 2.03 ab                    | 74.92 cdefg                    | 21.1 fg                  | 3.41 g    | 7.29 a                         |
| CONTROL     | 9.3 a                       | 91.25 a                      | 135.73 h                     | 1.99 b                     | 68.51 g                        | 20.8 g                   | 3.41 g    | 7.26 a                         |
| LR          | 9.1 a                       | 81.92 a                      | 147.42 efgh                  | 2.07 ab                    | 71.40 efg                      | 21.4 efg                 | 3.38 g    | 7.20 abc                       |
| SP          | 8.6 ab                      | 84.00 a                      | 137.58 gh                    | 2.02 ab                    | 67.98 g                        | 21.1 fg                  | 3.43 fg   | 7.19 abc                       |
| ST          | 8.3 abc                     | 64.84 b                      | 174.30 abc                   | 2.08 ab                    | 83.92 abc                      | 22.1 def                 | 3.53 cde  | 6.98 abcd                      |
| ST+LR       | 7.1 bcd                     | 56.58 bcd                    | 168.38 bcd                   | 2.17 a                     | 77.85 bcdef                    | 23.1 bcd                 | 3.50 def  | 6.80 def                       |
| ST+SP+LR    | 7.0 cd                      | 56.67 bcd                    | 164.08 bcde                  | 2.18 a                     | 75.18 cdefg                    | 23.0 cd                  | 3.53 cde  | 6.87 cdef                      |
| ST+SP       | 6.4 de                      | 59.25 bc                     | 145.89 fgh                   | 2.10 ab                    | 69.46 fg                       | 22.6 de                  | 3.46 efg  | 6.86 bcdef                     |
| SP+CT       | 6.1 def                     | 51.50 cde                    | 159.42 cdef                  | 2.10 ab                    | 75.92 cdefg                    | 24.3 ab                  | 3.54 bcde | 7.08 abcd                      |
| СТ          | 5.7 defg                    | 46.42 de                     | 163.00 bcde                  | 2.07 ab                    | 79.04 abcde                    | 24.0 abc                 | 3.56 bcd  | 7.25 ab                        |
| CT+LR       | 5.0 efgh                    | 41.79 ef                     | 160.28 cdef                  | 2.04 ab                    | 78.75 abcde                    | 24.9 a                   | 3.58 abcd | 6.95 abcde                     |
| SP+CT+LR    | 4.8 fgh                     | 41.42 ef                     | 154.11 defg                  | 2.12 ab                    | 72.92 defg                     | 24.5 a                   | 3.57 abcd | 6.88 bcdef                     |
| ST+CT+LR    | 4.62 fgh                    | 32.92 f                      | 188.55 a                     | 2.16 a                     | 87.19 a                        | 25.0 a                   | 3.65 a    | 6.60 ef                        |
| ST+CT       | 4.3 gh                      | 32.25 f                      | 178.06 ab                    | 2.09 ab                    | 85.56 ab                       | 24.5 a                   | 3.59 abc  | 7.11 abcd                      |
| ST+SP+CT+LR | 4.0 h                       | 31.67 f                      | 167.21 bcd                   | 2.05 ab                    | 81.54 abcd                     | 24.7 a                   | 3.63 abc  | 6.52 f                         |
| ST+SP+CT    | 3.7 h                       | 29.04 f                      | 169.02 bcd                   | 1.97 b                     | 86.02 ab                       | 24.8 a                   | 3.63 abc  | 6.74 def                       |

## Vine nutrition

- Many nutrients are required by vines for healthy vine growth and proper function
- Imbalances of certain nutrients can have serious consequences for wine quality
- Nutrient status and requirement should be established by regular monitoring
  - Observation
  - Soil testing
  - Petiole testing

## Nitrogen (N)

- Required by grapevines in largest amount of all nutrients
- Taken up or utilized as either nitrate (NO<sub>3</sub><sup>-</sup>) or ammonium (NH<sub>4</sub><sup>+</sup>)
- Used in amino acids, proteins, nucleic acids, chlorophyll, enzymes
- Mobile in plants
- Vine nitrogen status
  - Excess levels can cause excess vigor, delay ripening, decrease berry quality
  - Deficiencies can reduce growth, crop, berry quality and aroma precursors

## Nitrogen fertilization of Riesling

- 3-yr study in WA State on site with low-fertility
- Fertilization rates of 0, 50, 100, 200 lbs/ac
- As N rate increased:
  - Pruning wt increased up to 100 lb rate
  - Yield increased with 50 lb, no significant difference from 50 to 200 lbs
  - Ripening and harvest was delayed from 6-16 days with increasing rate of N
  - Total N, amino acids increased as N did
  - Increasing N reduced free monoterpenes, increased many bound monoterpenes
  - Decreased some higher alcohols
  - Increased concentrations of most esters

## Potassium (K)

- Used in large quantities; in grapevines is 2<sup>nd</sup> most required element
- Used as regulator of biochemical processes in plants including: CHO production, protein synthesis, solute and sugar transport, stomatal regulation
- Taken up as K+ ion
- Vine potassium status
  - Deficiencies can result in lower sugar levels
  - Excesses can potential lead to high juice/wine pH levels

## **Excess potassium**

- Morris, et al. 1987
  - 3 year study
  - 5 winegrape varieties (Ge, Se, CS, deC, Cyn)
  - Fertilized with 6 lbs  $K_2SO_4$  per vine
  - Significantly higher must pH (3.6 3.8) in all except Gewürztraminer
- Morris, et al. 1983
  - 3 high rates of K<sup>+</sup> to applied weekly to Concord vines
  - Juice processed and analyzed either fresh or after 3day cold storage
  - In both cases juice pH was significantly increased
  - High pH led to juices of less desirable color

## Conclusions: Vineyard management and grape quality

- Wine grape quality development is improved by practices that improve:
  - Vine health and nutrition
  - Leaf area: fruit ratio
  - Leaf and fruit exposure to light
- Research results on many aspects of vineyard management vary, especially according to region and grape variety, indicating need for regional and varietal specific investigations