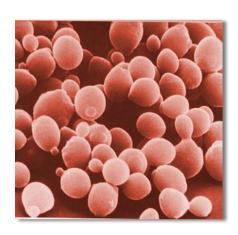
Separation Anxiety

Observational Insights to Understanding Wine Filtration

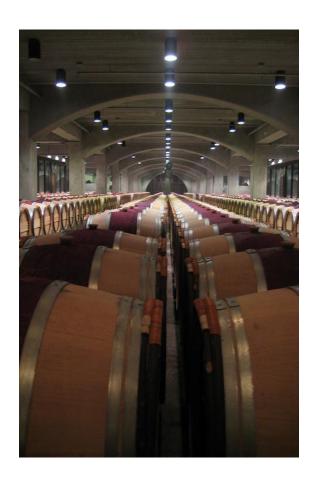

Filtration Goals

-Clarity

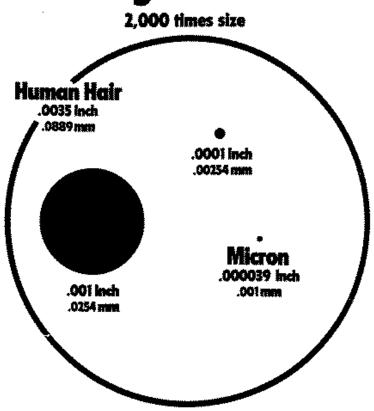
-Stability

-Efficiency

Scott Labs' Specialty

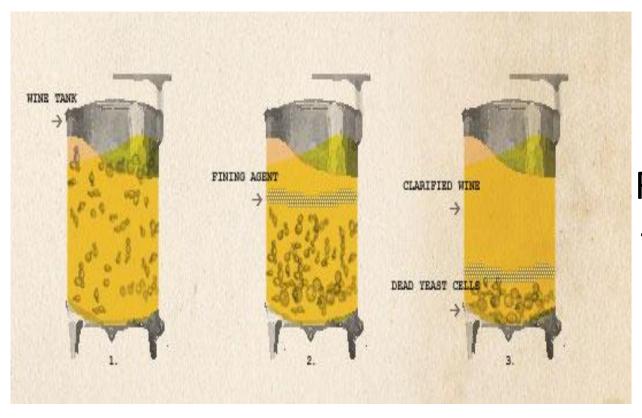

- Filtration sales since 1965
- 90% of our filters used in winemaking
- Global awareness of process
 - Fermentation
 - Packaging
 - Bottling
- Our concern is for the wine, not for the filter.

The Winemaking Process



Micron or µm

How big is a Micron?

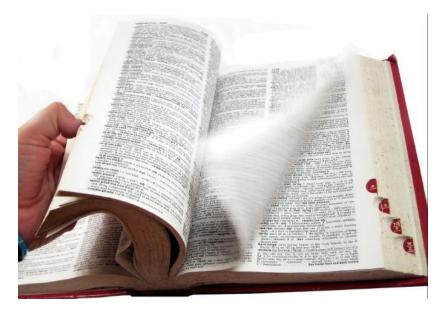


Suspended Solids

- Grape pulp 20 to 200 micron, gelatinous
- Tartrate crystals 5 to 500 micron, rigid
- Protein precipitates 2 to 20 micron, gelatinous
- Yeast 1 to 2 micron, gelatinous
- Bacteria 0.5 to 0.8 micron

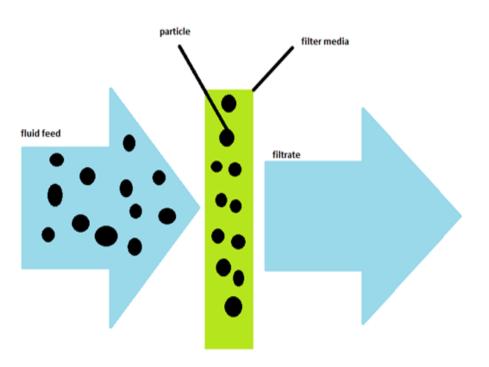
Clarification and Stabilization

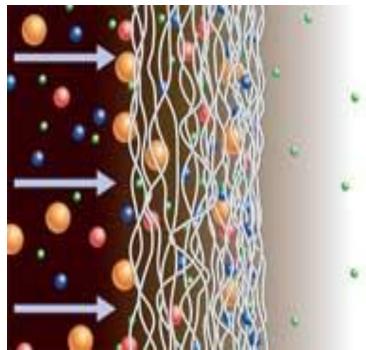
Fining agents
Temperature
Gravity
Racking

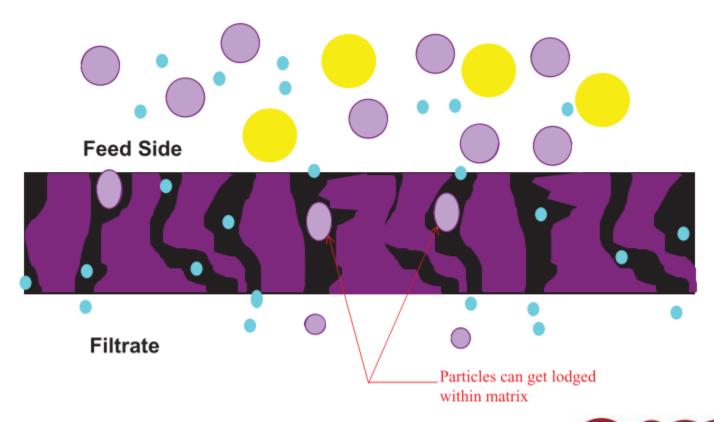

Glossary

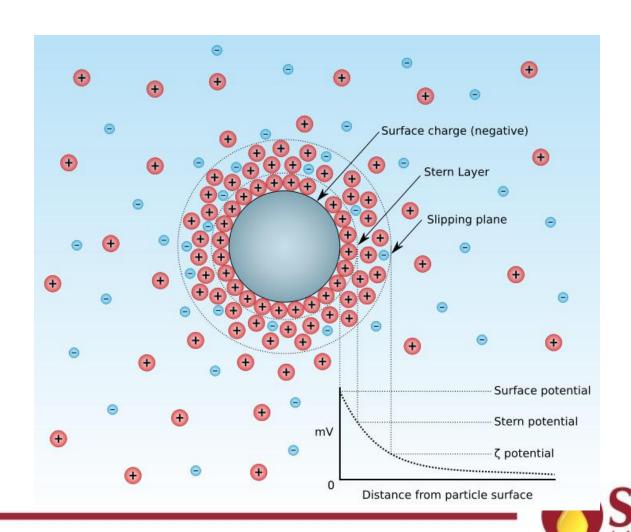
Depth and Membrane Filtration

Absolute/Nominal


Rough, Polish & Sterile

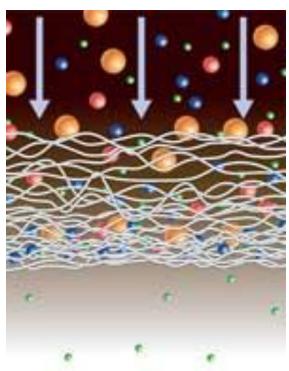

Integrity testable


How does depth filtration work?



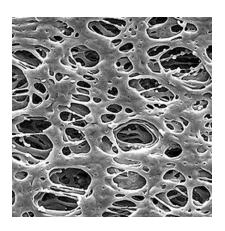
The labyrinth or tortuous path

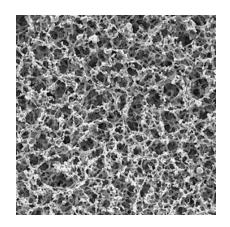
The charge on DE

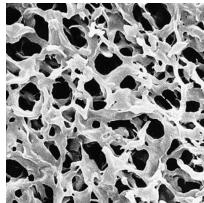

Depth Filtration

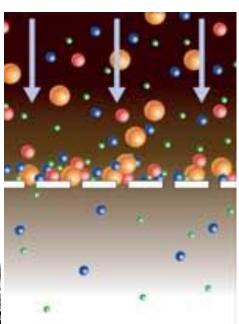
- Goal Removing Solids
- "Dirt holding capacity"

• Example: Filter pad media; DE Filtration; PP cartridges.

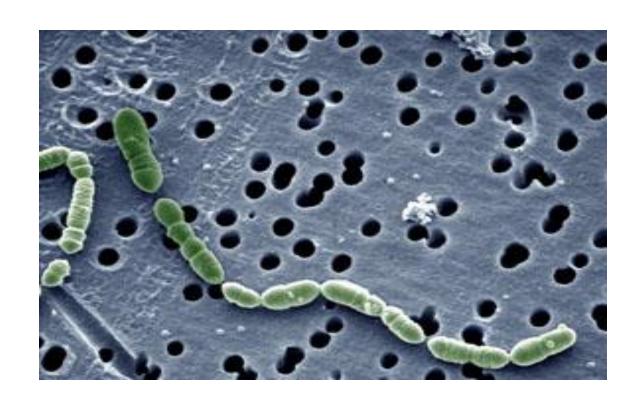




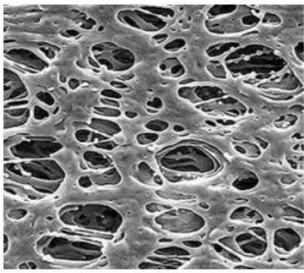


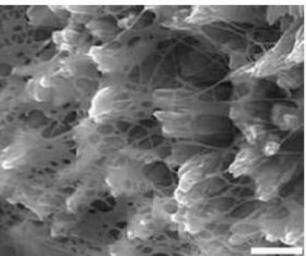

Membrane Filters

- High precision / accuracy
- Very low dirt holding capacity
- Examples: X-Flow, PES, PVDF,
 Glass matrix. Cellulose Acetate



Oenococcus oeni on membrane surface

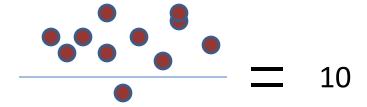




Glucans

Clean PES membrane

PES membrane fouled with glucans from *Botrytis*



ue H₂O

"Nominal vs Absolute"

Beta ratings

$$\beta_{\mathbf{X}} = \frac{\mathbf{n}_{\mathsf{Upstream}} \ge \mathbf{X} \ \mu \mathbf{m}}{\mathbf{n}_{\mathsf{downstream}} \ge \mathbf{X} \ \mu \mathbf{m}}$$

- Testing methodology
 - Typically spherical Glass or Nylon beads of a determined size passed under lab pressures
- Nominal = NOT absolute
- Absolute = maximum sized glass sphere
 (Absolutely nothing larger than the micron rating will pass through the membrane)

Titer Reduction Values

- Goal-based classification
- The best current method to distinguishing between similar but different filters
- 10⁶ vs 10⁹

Absolute/Nominal vs. Titer Reduction Value

- Two Filter Carts. Same grade, different Titer value:
 - Seitz XLII 0.45
 - **10**⁹ reduction of *Serratia marcescens*
 - 99.999999% reduction
 - Brand X 0.45
 - 10⁶ reduction of *S. marcescens*
 - 99.9999% reduction

Example #1

 Take an example of a wine exhibiting 100,000 cells/ml. Expect the following for the Seitz XLII 0.45:

 Reduction of 99.9999999 at 10⁹ would yield 0.0001 cells per ml **OR**:

• .075 bugs per bottle

100,000 cells/ml 750 ml/bottle

x 0.000000001 x 0.0001 c/ml

0.0001 cell/ml 0.075 cells/bottle

Example #2

- Now try Brand X 0.45 with a titer reduction of 10⁶ at :
- Reduction of 99.9999% would yield 0.1 cells per ml
 OR:
- 75 bugs per bottle

100,000 cells/ml	750 ml/bottle	
<u>x 0.000001</u>	<u>x 0.1 c/ml</u>	
0.1 cell/ml	75 cells/bottle	

Is this an important difference? Maybe.

Rough, Polish and Sterile

ROUGH	POLISH	STERILE/SANITIZING
Greater than 5 micron	Between 1-5 micron	Less than 1 micron
-Turbidity reduction -Excessively cloudy -Visible solids removal -Heavy Yeast removal	-Brightness -Final clarity -Yeast Population reduction	-Brilliance -Yeast "sterility" -Bacteria log reduction or "sterility"
DE: 1 Darcy Lenticular & Pads: K700 and up Cartridges: Polypropylene	DE: 0.3-0.4 Darcy Lenticular & Pads: K100 through K300 Cartridges: Glass or PP	DE: 0.1-0.2 Darcy Lenticular & Pads: EKS through KS80 Cartridges: PES

HUMAN HAIR: 55 μ Common PVPP: 25 μ Saccharomyces: 1-5 μ Denococcus: 0.5-1 μ

Filtration options

Pads

POWER

Lenticular

DE Filter

X-Flow

Cartridge

CAPITAL

MEDIA COST

LABOR

DISPOSAL

Filter Pads

- Preformed Depth Filters
- Rated from 0.2-55 microns
- Cellulose, DE, Perlite, Resin (or some combo)

- Pro: Pre-formed; repeatable; low capital costs
- Neutral: Medium media cost
- Con: Leakage loss; Disposal; Setup time; Space

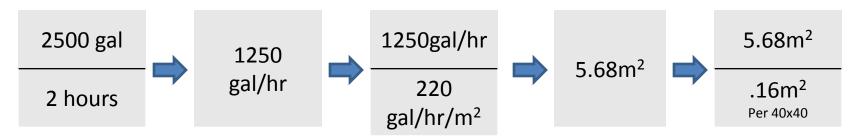


Plate & Frame Filter

Assumed Conditions* - Pad Media

- Average filter capacity period: 2 hours
- Optimal flow rate per m² pad media
 - Sterile: 125 gal/hr/m²
 - Polish and rough: 220 gal/hr/m²
- Example: 2500 gallons of red wine to polish

RECOMMENDED USE OF AT LEAST 36 40X40 FILTER SHEETS

Filter pad regeneration

- 15 minute cold water forward flow
- 15 minute warm water (120F) forward flow
- 20-30 minutes sanitizing with 180F water
- Cool down the pads (slowly) after sanitizing otherwise microbes will breed overnight.
 (at 78 – 115F you can increase the population from 1 cell to 4 trillion overnight.)

Efficiency Tips - Pads

- Pre-rinse cycles
 - 2.0 pH with Citric and up to 1000ppm SO2
- DO NOT MIX GRADES WITHOUT CROSSOVER
- Replace "H" Gaskets every two years OR when hardening of rubber occurs
- Regeneration
 - Forward flushes of 120F
 - If Backflush, DO NOT exceed 7PSI
- Use 2-stage filtration when possible

Lenticular Filters

- THE SAME MEDIA AS PADS
- Modular format with 2 adapter types

 Pro: Quick setup/breakdown; repeatable; low capital costs; some backflushable; storable;
 VERY LOW LOSS

 Con: Higher upfront media costs; disposal

Lenticular Filter

Efficiency Tips - LENTICULAR

- Be flexible with housings
 - Size filtrations to minimize cost/filtration
- Regeneration
 - Forward flushes of 120F
 - If Backflush, DO NOT exceed 7PSI (use backflush plate for maximum support and efficiency)
- 12" vs 16" modules.
- Different height center posts, dual grade modules.

Cartridges

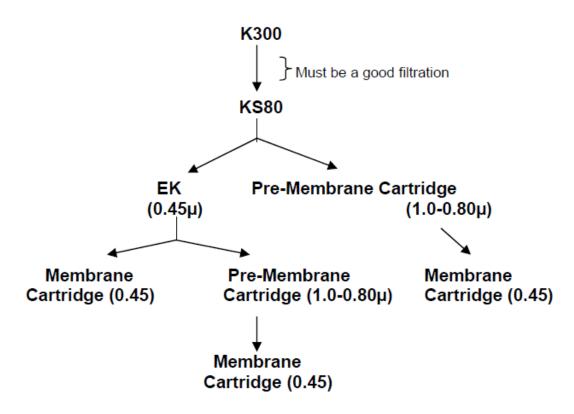
- Very low dirt holding capacity
- Very high precision and accuracy

- Often polymer based and sold for "T-style" housings in our industry (single open end)
- PRO: Standard for bottling; repeatable;
 regenerable; storable; high filterable surface
- CON: Poor for high solids; High media cost

Cartridge Filter & Housing

Integrity Testable

- IS THERE A **HOLE** IN MY FILTER!?
- Tests
 - Pressure diffusion
 - Bubble point
 - Pressure hold
 Same physics. Differs
 in which part of flow spectrum they examine.
- These tests should be preformed BEFORE and AFTER a filtration on membrane filters <1 micron.


Efficiency Tips - Cartridges

- REGENERATE AND STORE
 - Decrease expenses
 - Regenerate with Cleanskin K and store in EtOH (cheap vodka) or a pickle of Acid and SO2.
- If storing in SO2, remove gaskets
- In line Regeneration
 - Forward flushes of 130F
 - Backflush depth filters, but use hold-down or Code 7
- Do not wait more than 24 hours after "pre-filtration"
- Integrity test membranes BEFORE AND AFTER

Sample Filtration Strategies

Most Common Routes for Pad Filtration in Whites:

Record Keeping

- Maintain Notes
 - Date, Wine, Vintage
 - Where the wine is in process
 (i.e. after two rackings or stuck MLF)
 - Record filter type; capacity; grade; operator
 - Track original/terminal Differential Pressure (dP)
 - Periodically record:
 - Gallons filtered
 - dP for each filter stage

Contacts

- Scott Laboratories Technical Group
 - **–** 1-800-821-7254
 - 8 am -5 pm PST M-F
 - www.scottlab.com
 - Maria Peterson
 - Filtration Specialist
 - **–** 707-765-6666
 - mariap@scottlab.com

