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Abstract

We present the results of a rigorous quantum-mechanical calculation of the propagation of electrons
through an inhomogeneous magnetic field with axial symmetry. A complete spin polarization of
the beam is demonstrated assuming that a Landau eigenstate can be inserted into the field. This
is in contrast with the semi-classical situation, where the spin splitting is blurred. The feasibility

of demonstrating such an effect experimentally is considered.



The Stern-Gerlach experiment is one of the most important in the history of physics and
is often used to illustrate the nature of spin in quantum mechanics [1]. Curiously, a magnet
of the type used by Stern and Gerlach does not work with beams of electrons because of the
combined effects of the Lorentz force and the Heisenberg uncertainty principle. This was
shown first by Mott and Bohr in 1928 [2]. Subsequently, at the Sixth Solvay Conference
on Magnetism, Pauli made a more general argument that no device based on the concept
of classical particle trajectories and macroscopic magnetic fields could separate an electron
beam by spin[3]. The Bohr/Mott/Pauli argument is codified in numerous textbooks[4].

In this article we show that, in fact, it is possible to observe spin-splitting of a beam
of electrons using a longitudinal magnetic field configuration instead of the standard trans-
verse geometry of Stern and Gerlach. The longitudinal configuration has the advantage that
the electrons experience only off-axis Lorentz forces that are significantly smaller than the
on-axis forces in the transverse geometry. Such an idea was first proposed by Brillouin[5],
but was specifically rejected by Pauli. Recently, however, we discovered an error in the
reasoning Pauli used against Brillouin’s idea, and analyzed a counterexample using classi-
cal particle trajectories in which spin splitting of electrons could be achieved equal to the
blurring caused by the Lorentz forces[6—8]. Although these results are intriguing, they do
not take into account the wave nature of the electron, and thus do not address the central
question: can a spin separation really be expected? In this article we report the results of
a rigorous quantum mechanical analysis of the longitudinal Stern-Gerlach problem, which
corresponds to physical reality. We obtain the surprising result that complete separation can
be achieved, an improvement over the semiclassical situation. We also consider the problem
of producing and inserting an electron wave packet into a real, bounded magnetic field, and
find a promising result in this regard as well.

Several previous experiments and quantum-mechanical arguments are of relevance in
this context. It is clear that in a non-beam configuration electron spin separation can be
effected; Dehmelt and his colleagues have accomplished this with a modified Penning trap[9].
Quantum calculations have also shown spin separations in static situations of this type

[10, 11]. For the beam configuration considered by Pauli et al., however, the situation is more



ambiguous. Adler [12] and Garroway and Stenholm [13] have shown that the conventional
Stern-Gerlach geometry can yield polarization enhancements over narrow spatial regions of
the output beam. More importantly for this discussion, Bloch[14] and Dehmelt [9] have
sketched quantum arguments for longitudinal field geometries and suggest that complete
isolation or filtering of the lowest energy “spin-backward” state should be possible. They did
not, however, consider the non-destructive case of full transmission of both spin components
in a beam. An experiment of the “Bloch-Dehmelt” type was performed by Knight and his
colleagues in the mid 1960s, and observation of a low energy (< 107%eV/) tail of (presumably)
spin-polarized electrons was observed[15]. This work was never formally published, and,
apparently, could not be reproduced [9]. Sannikov [16] and Conte et al.[17] considered the
problem we take up here, i.e., longitudinal spatial spin separation of a fully transmitted
beam, but did not use electron wave packets having extended transverse dimensions. This
precludes any elimination of the splitting due to blurring of the separate spin states.

Our calculation begins with the full non-relativistic Hamiltonian for an electron in the
magnetic field B(p, ¢, z) of a simple current ring. The ring lies in the z-y plane, has radius

R, and is centered at the origin. Thus
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where wr,(z) is the Larmor frequency (%), L, is the operator for the canonical angular
momentum of the electron about the z-axis, S;, Sy, and S, are the Cartesian components
of the spin operator, m, is the electron mass, and g = 2(1 + a.) is the anomalous electron
gyromagnetic ratio. Eqgs. (4) and (5) bear some discussion. The first two terms of (4) and
the first term of (5) correspond to the electron’s kinetic energy. In (4), both the fourth term
and the part of the third term involving L, correspond to the classical — i, - B potential of
an electron with orbital angular momentum about z. The latter part of the third term in (4)
and the second term in (5) are the equivalent terms for the magnetic potential associated
with electron spin. If B were uniform, the last term of (5) would vanish, and both m; and
mg, the quantum numbers associated with L, and §S,, would separately be good. Generally,

for the Hamiltonian of (3), only m; = m; + m, is a good quantum number.

We now construct complete wave packet solutions of the form
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where 7 is a spinor, the @nmm,(2,t) are functions that contain all of the explicit z and ¢

dependence of 1 as the electrons move along the magnetic field, and
HLRgzml)nms = Enmym, R%m’)nms- (7)

Note that the Rslml)(p, ¢) have a parametric dependence upon z, but otherwise are solutions

to the standard Landau problem. They span z-y space and can be written as
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Ermyms = hwr(2)(2n + |my| + my + gmy + 1). (12)

In order to leave m; as an explicit quantum number, we have not followed the common
practice of denoting 2n + |my| as another single integer. The energy levels of the uniform-

field Landau Hamiltonian are shown in Fig. 1.
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Substituting (6) into (3) and using (7), we obtain a set of coupled partial differential
equations for the aypm,m,. The coupling terms in these equations are crucial because they
determine how non-adiabatic the electron transmission process is, i.e., how likely it is for
an electron in a given Landau uniform-field eigenstate to depart from that state over the
course of its passage through the varying magnetic field. In order to make estimates of
these terms, we start with the set of physical quantities considered in the semiclassical
calculation of Ref. [6]. The electrons follow a 2m path length that has a midpoint at the
center of a 2 cm radius current ring where the field magnitude By is 10T. Their initial speed
is taken to be 10° m/s. These values provide a reasonable splitting (631 um) of the spin
in a semiclassical model for on-axis trajectories. Moreover, they represent values that are
achievable experimentally; 10° m/s corresponds to an electron energy of 28 meV, so that
patch field effects could be made small [18]. Solenoidal fields comparable to the single-turn
ring field considered here are produced routinely. From the point of view of the present
work, the 10T maximum field means that magnetic potential energies for the electron along
the trajectory will always be < 28 meV for the lowest Landau levels.

The above experimental conditions justify two approximations in our solution of the
Schréodinger equation for this problem. First, the z-dependence of the Landau Hamiltonian
(Eq. 4) could cause transitions between uniform-field Landau eigenstates. We find that these
off-diagonal coupling terms can be neglected with one exception: those associated with the
magnetic field gradient that arise from the second term on the right of Eq. 5, corresponding
to the possibility of electron spin flip. Second, given that the maximum magnetic potential
energies are much smaller than the electron kinetic energy, the WKB approximation is valid
for the longitudinal wave function propagation.

The spin-flip probability can be characterized by the ratio of coupling terms U:
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where ¢ and j label states connected by the transverse spin operator. Although not negligible,
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this quantity is < 1072 at all values of z, and corresponds to spin-flip probabilities of

the same order of magnitude integrated over the full path length. This is also the spin-



flipping probability estimated semiclassically in Ref.[6]. Thus the electrons traverse the
magnetic field almost completely adiabatically; if a wave packet that corresponds to a Landau
eigenfunction can be inserted into the field, the probability is high that it will emerge in the
same state at the other end. It is interesting to note that the small amount of spin flipping
that does occur is inversely proportional to the electron g-factor anomaly.

We now consider the transmission of the two Landau wave packets with n,m;,m, =
0,0,£1/2. These states are most strongly coupled to the 0,+1,F1/2 states, respectively
(see Fig. 1), but, as discussed above, this coupling is sufficiently small to be neglected. The

packets are superpositions of plane waves such that
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The value of x3 should be chosen to minimize the spreading of the wave packet along Z over

the electron flight time [/vy. This condition yields
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and interpreted as follows: the wave packet is displaced by a distance id; 1 relative to its
position in the absence of a magnetic potential, and spreads by an amount corresponding
to the normal spreading of a free wave packet at time ¢ plus an extra amount corresponding
to an additional time increment, mghds.

The results of our calculation for the “spin-forward” and “spin-backward” minimum
uncertainty wave packets are shown in Fig. 2. Their most striking feature is the virtually
complete separation of the two packets, in marked contrast with our previous calculations|6],
in which the packets were barely resolved. In those calculations, “magnetic bottle” forces
associated with the mechanical orbital angular momentum of the electron “smeared” both
packets by an amount equal to their centroid splitting. In the present situation, the individ-
ual wave packet spreading is essentially that which one would observe in a field-free mea-
surement, with a very small additional spreading characterized by d,. The lack of spreading,
when compared with the semiclassical case, results because the eigenenergies of the electron
wave packet depend not on the mechanical angular momentum but on the canonical angular
momentum L,, which is sharp. Since the electron wave packet is characterized by a sharp
eigenenergy, the only relevant “force” acting on it is proportional to the longitudinal spatial
derivative of the magnetic potential (and thus 0B/0z)) and is thus sharp as well.

A quantitative measure of the spin splitting can be made using the quantity F' = S/W,
where W is the full-width-half-maximum (FWHM) of one of the two spin components along
the z-axis, and S is the splitting distance separating the two spin component centroids. Thus
F = 0 in the field-free case, unity if the spins are just resolved using Rayleigh’s criterion,
and > 1 for “complete” splitting. F is plotted in Fig. 3 as a function of mean electron
energy Ey. Wave packets obeying the minimum spreading criterion have widths at the end
of a given field-free path-length [ proportional to E, /% Whereas the spin splitting varies as
Ey'. Thus, even at the lowest energies we consider, magnetic splitting always dominates
natural wave packet spreading.

We now address the issue of experimental feasibility, which is essentially determined by
the difficulty of inserting the ago+1/2 states into a realistically terminated magnetic field.

Our aim here is not to provide a blueprint for experimental confirmation of our findings,



but to demonstrate that no fundamental physics prohibits an observation of spin-splitting.
The initial packets must have the spatial dimensions and angular momentum properties of
the ground Landau states in a minimum-spreading longitudinal configuration. This means
that they must be cylindrically symmetric so that m; = 0. Assuming an energy of 28
meV, minimum spreading requires a longitudinal velocity uncertainty of 1 m/s and a pulse
duration of 2 ps. These requirements can be met using laser deflection techniques and a
series of preliminary apertures in a low-field region [19]. We assume that the Stern-Gerlach
field is surrounded by a high-permeability container with a circular entrance aperture on the
beam axis. It can be shown that the aperture’s diameter should be d = 1/20h/eB, where
B is the field several diameters, d, inside the container. This value of d assures maximum
overlap between the ago+1/2 states and an incident wave whose transverse dimensions are
much larger than the aperture. In this case, electrons emerging into the high field region
have an 82% probability of being in the n = 0 state. The chance of being in a state with
n < 16 is 95%. After the n = 0 state, the two states with the largest probability are those
with n = 2 (5%) and n = 3 (6%). The effect of these “contaminant” m; = 0 states on the
transmitted electron spectrum is shown in Fig. 2.

For an apparatus whose typical dimension is 1 m, B will be of the order of a gauss at
the aperture (d = 5u). The size of the aperture is large enough to prevent appreciable
diffraction as the electrons enter the high field region; their de Broglie wavelength at this
energy is < 107®m. Finally we note that numerical solution of Laplace’s equation for the
magnetic potential in the presence of a small aperture shows that the field “leaks” out into
the low-field region with an exponentially decaying far-field spatial dependence. The integral
of B-di for a straight-line path through this region is at most 10~ gauss - m. Since the
cyclotron radius of a 28 meV electron in a 1 gauss field is &~ 6 mm, electron plane waves with
this energy experience negligible Lorentz-force distortion prior to the entrance aperture.

We speculate that the most pernicious problem in such experiments would be the non-
ideal nature of the collimating apertures, manifesting itself in spurious magnetic field effects
and scattering from the aperture boundaries themselves. A better experimental approach

may well be one of the type discussed by Conte et al. [17], in which the beam to be polarized



is that of a synchrotron, and the separation is effected through a series of longitudinal Stern-
Gerlach “kicks.”
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FIG. 1: Energy levels E, ,, m, of the uniform-field Landau Hamiltonian. Minimum uncer-
tainty wave packets (indicated with circles around the sign of m;) correspond to n, m; = 0, 0,
and are most strongly coupled in an inhomogeneous field to the 0,£1 states, as indicated

by the rounded brackets. (see text).
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FIG. 2: Electron probability density vs. distance along the z-axis after traversal of a 2m
flight path. Each peak is marked with its principal (n, m;, m,) values. Distance indicated is
the deviation from the position of the leading packet, which equals the field-free position.
The n =2 and n = 3 peaks are “contaminant” contributions caused by the insertion of the

electron into the magnetic field (see text).
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FIG. 3: Spin splitting figure of merit F' vs. electron energy. When F' = 1, the opposite-spin

wave packets just meet the Rayleigh resolution criterion.
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